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ABSTRACT 

If an equalizer amplitude response ourve is specified, it trill be 
shown that the minimum flat loss obtainable with physioal networks is de- 
termined.  This flat loss, or scale factor on the response curve, is a 
function of the equaliser output terminating impedance which is arbitrary 
but prescribed, and the specified tolerance on input mismatch. 

If the output impedance is purely reactive, the limitations on 
maximum voltage transfer are obtained from a consideration of the open cirouit 
impedance parameters of the system.  If power or voltage transfer to a load 
with finite real part is to be optimized, the scattering parameters of the 
system are used to determine the limits of performance. 

Examples will be given comparing the performance of matohed and 
lossless equalizers. In many practical cases the latter do not have sub- 
stantially higher gain than the matohed equalizer. 

I 
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I.*  Definition of Equaliser Problem 

The equalizer problem considered here concerns the transfer of 
voltage, current, or power from a prescribed generator with resistive internal 
impedance to a load whose impedance is a given function of frequency.  It is 
presumed that a real frequency function is specified which defines the shape 
of transfer gain characteristic desired, and it is required to find a passive 
linear reoiprooal equalizer network (a two terminal pair transducer, or two- 
port) whioh when plaoed between generator and load produces the speoified gain 

•        Bhape and does so with maximum soale factor i.e. minimum flat loss. A gain 
characteristic whioh ideally is constant over a finite frequency band and zero 
elsewhere will be of "i»jor interest, and many of the results given may there- 
fore be ragarded as generalizations of the concept of maximum "gain-bandwidth 
product".! 

An additional specification is the tolerance on input mismatch.  It 
is only because the equalizer networks investigated here are not limited to 
the lossless case that this specification can be set independently of the 
others.  In most of the examples given below the extremes of a matched input 
dissipative equaliser (zero mismatch) and a completely lossless equalizer 
(but not matched) will be compared. 

Various aspects of the equalizer problem have been previously con- 
sidered. Bode* disousses the limitations on "gain-bandwidth" product imposed 
by a load with shunt capacitanoe when a lossless equalizer is used, and also 
gives some consideration to matched equalizers for voltsge transfer to a 
reactive load2.  Fano3 has treated the problem of optimum matoh of an arbitrary 
load with a lossless network and La Rosa and Carlin^.5,6 have examined this 
problem when the lossless restriction on the matching network 13 removed. 
Norde7 has treated matched minimum phase voltage equalizers for reactive loads. 
Other work on special aspects of "gain-bandwidth" product is too extensive to 
be given here. Wheeler^ and Eanyen^ are typical references. 

The present paper cons-Mere the general approach to any equaliza- 
tion problem and stems directly from the references cited above.  The results 
presented on optimum voltage transfer to an arbitrary load (including the 
purely reacti-<r<» load case) have not been given elsewhere. 

II.  General Approach to Equalization of an Arbitrary Load 

There are two basic restrictions which govern the design of an 
equalizer network.  One of these is the general requirement of physical re- 
alizability on the overall network which includes both equalizer and pre- 
scribed load.  The other is the total set of constraints specifically imposed 
by the load and this should be entirely independent of the equalizer net- 
work.  If these constraints are satisfied, then when the overall network is 
synthesized, and the given load removed, the remaining circuit (the equalizer 
alone) is physically realizable.  The form in which these restrictions are 

This was presented at the IRE National Convention*Symposium on Metwork 
Equalization, March 24, 1954. J 

! 
I 
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« explicitly (and preferably in a simple way/ in- 
volve the transfer gain function whose scale factor is to be maximized.  The 
process of finding the optimum equalization is then to adjust the gain func- 
tion within thes3 general restrictions until the limits of physical real- 

";-' izability are attained. 

The constraints which apply to the equalization of a load containing 
dissipation (the purely reactive load case is considered later) are most 
readily obtained by representing the prescribed load over- the infinite fre- 
quency spectrum as a purely reactive 2-port with fixed elements terminated in 
a unit resistor.  (Hereafter the generator resistance will be presumed normal- 
ized to unity*°»~ .  This representation is always possible and the single 
resistor is sufficient to account for all the power dissipated in the load.) 
The "overall network" is now defined as the equalizer plus the reactance two 
port portion of the load. 

In order that the "overall network" be physically realizable, it 
must have an array of scattering coefficients 12 s^ (p), S22 (p), S12 (p) 
whioh form the matrix of a positive definite or semi-definite Hermitian form 
for Re p^O 5,6,12,13.  The algebraic expression of this requirement gives 
the general set of realizability constraints previously referred to. 

The specific load constraints are obtained from the fact that at 
certain real and complex frequencies no power can be transferred to the load 
no matter what equalizer network is used.  These frequencies are the points on 
jio and in the right hand half of the p plena at which the reactive 2-port 
portion of the load has zeros of transmission. At these frequencies the trans- 
mission factor cf the overall network S^g (p) must generally have a zero of 
transmission of order 2n if the load zero is of order n. Further the reflec- 
tion factor looking in at the back end of the "overall network" i.e. S22 (p) 
and generally its first 2n-i derivatives are completely determined by the 
reactance 2-port portion of the load.  These properties follow from a con- 
sideration of the scattering equations for the cascade connection of a pair 
of two-ports0^ and constitute the "load constraints" referred to earlier.  It 
must be emphasized that load constraints are independent of the equalizer. 

The load constraints amount to the statement that essentially the 
first 2n Taylor coefficients of the back end reflection factor of both load 
and overall network are equal in the series expansion about a load zero of 
transmission. 

These requirements may be expressed in terms of the Cauohy formulas 
for the Taylor coefficients, and as a final result one obtains integral formulas 
for the logarithm of the amplitude of the back end reflection factor.  If the 
overall network is specified so thfct it satisfies the general realizability 
requirements and in addition meets the limits on In 11/S22( ."5°°) | imposed by the 
integral formulas, then the prescribed load can always be separated from the 
overall network leaving a physically realizable equalizer 2-port.  A statement 
of these realizability conditions in the form of a theorem essentially as 
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given by La Rosa4»^  is as follows t 

Theorem 1 

The necessary and suffioient conditions  that a scattering matrix 
fs(pJl   (? S"<T,+ jo>) represent an overall network composed of an equalizer in 
tandem with a prescribed lossless 2-port (the reactance 2-port portion of the 
prescribed load) ist 

(a) Matrix  QQ   should be realizable  i.e.  I - [| (>[jj*T{| (>)] 
must be the matrix of a positive definite or semi-definite hermitian form, 
with   LS^l   symmetric and its elements  rational functions of p with real coef- 
ficients,  and no right half plane poles. 13 

(b) Right hand and boundary zeros of transmission of the load must 
appear in the transmission factor Sig(p) °' *no overall network with at least 
the same multiplicity. 

(c)* A set of integral  restrictions  on in  j l/Sg2  (j">) I   of the form 

/ fiU) ln krr>)'dw" Ki (1) 

must be simultaneously satisfied at all the zeros of transmission of the 
load. Each n"kh order zero contributes % integral equations with 

1 
n for a zero at zero or  infinity 

2n for a zero  on jta 

2n-n    for a right hand  zero on the   real  axis 

| i 4n-2n    for a conjugate pair of zeros   in the  right half plane. 

n0 is the order of any right half plane zero of load transmission coincident 
with a zero of back end load reflection factor, i.e. of the reactance 2-port 
portion of the  load. 

This  theorem can be  applied  in a direct and simple  fashion to a 
variety of equalization problems   involving a load  containing dissipative 
elements.     Special  consideration will be  required  for problems   involving a 
purely reactive load. 

III.   Power  Transfer Equalization 

The  application of the  theorem given in the  preceding section re- 
quires  a determination of ths  relationships between the  transfer  function 

The weighting functions  fi(co)  are  tabulated by Fano^.     The   K^ are  related  to 
the   Taylor coefficients  of the  load at  the  zeros  of transmission and are  also 
tabulated in the  same  reference. 
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which is to he optimised and the reflection factor amplitude of the Overall 
network |$22(jw)|.  The integral equations can then he used to determine 
"gain-bandwidth" type of restrictions on the equalizer.  Part (a) of the 
theorem contains the necessary information for relating the reflection factor 
function SggCjw) to the equalization response of the overall network. In the 
case of power transfer from a generator with unit internal impedance to a 
load (represented in Darlington form), the insertion power gain at reai fre- 
quencies of the overall network normalized to the available generator power is 

Pf " IS12 (JW)|2 (2) 

PT, is the power delivered to the load, PQ is the available generator power 
(iVgl /*» where Vg ia the generator open-circuit voltage) and IS i g ( jco) | is 
the amplitude of the voltage transmission coefficient of the overall network. 
Since this power transfer funotion is an element of the scattering matrix, it 
is directly related to |S22(jc°)[ bv i:n^ general realizability constraints of 
part (a) of the theorem. La Rosa&»6 has shown that this portion of the theo- 
rem leads to the following necessary requirement on |S]_2(j»)| for an equalizer 

• which maximizes the scale factor of power function when the shape is specified. 

*' !si2U^)|
2 - (i - |sS2(3»)I) (1 

+ lsn<*»>l> ls22(3«)l>i (snO>l     (3) 

In equation  (3),   |Sn(ja>)|   is  s. specified  input  reflection factor 
amplitude function which sets  the tolerance  on input mismatch.     In the  special 
case  that the  equalizer  is   lossless,   |3ii(ja>)|   *   |S22(jt°)|  an<i equation (3) 
becomes 

12   _   i r a     ( A,.. "\! 2 

|312vjw,,     -  x  -   rg2 

|s12(j»)|« •= 1 -  jSggO)^ (4) 

(losslese  equalizer) 

In another special  case where  the  input mismatch  is   zero  i.e.  Sj^(p) -  0 
equation (3)  reduces  to 

3,„(ju>)|2  -  1  -   [S22(»| (5) 

(matched equalizer) 

Equations (3), (4), (5) give the desired relations between 
S22(jco)| and the power transfer function ISigO^)!^'  Th« integral equations, 
1),  may therefore be expressed in terms of the power transfer function and 

solved to obtain the maximum scalff factor.  The details of thiB procedure as 
well as examples are given in referenee*»5,6.  The solution of the equations 
always gives a unique maximum-gain scale factor for a prescribed shape of 
power transfer function and this cannot be exceeded by any physical equalizer. 
In the case where the equalizer la to produce a flat pass band with zero gain 
outside this band, the solution for the scale factor i3 particularly simple 
and is found directly in terms of a minimum constant value of ISggvjw)! • I^22' 
over the prescribed band with [S«„(.1w)| • 1 elsewhere-  In t '.3  case it is in- 
terestine to compare the optimum lossless and matched equalizers using 

! 
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equations (4) and (B) 

IS,. I  (lossless) ,    ,   .. . . 
10 log |-i2i-  - 10 log (1 + |S22I)^ 3 db      (6) 

|8l»l  (matohed) 

since [S22I 41 • In anJr practical design of a flat power equaliser |Sg2l 
ia 

considerably less than one so that ever a specified band the gain of an optimum 
matohed design is muoh oloser to the gain of an optimum lossless equaliser than 
the outside limit of 3 db given by equation (6). 

IV.  Voltage Transfer Equalization of General Dissipative Load 

A  Integral Constraints for Voltage Transfer 

The theorem given in section 2 may be applied to the problem of 
voltage equalization provided the voltage transfer function oan be related 
to the scattering coefficients of the overall network.  The voltage transfer 
function at real frequencies is taken to be 

e • Rjl (T) 

where   |V2(   is  the amplitude of the voltagp appearing across  the load and   |Vil 
is  the open circuit (fixed) voltage amplitude of a normalised generator with 
unit internal  impedance (pure resistance). 

The generator produces  a voltage V'g across  the one ohm resistance" 
in the Darlington representation of the load as  a reactance 2-port terminated 
in uhit resistance as  shown in Fig. MRI-13993.     This  voltage  is  related to 
Vj by the voltage scattering function S^9(p) °f "th® overall network (Fig. 
MRI-13993).     Thus 

V2 - S„(,)    Jl (8) 
Since the power at the input to the load is the same as that de- 

livered to the one ohm resistor in the Darlington representation 

|V2|
2  g(co) - IV'/ (9) 

where g(o») is the input conductance of the load. 

Combining equations (T), (8) and (9) 

,\nl.\HzWf (10) 
l\      4 g(») •   • 
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Since (Si2(ja)|2^ 1 it is immediately clear that in any physioal 
network 

^ 

2 
. <• 1  (ii) 

In equation (10) g(o>) is  specified by the  load alone and 9.   is 
direotly proportional to   |Sjo(i®)\'     Thus  » necessary requirement for maximum 
voltage  transfer is  to maximize   pigC j»)[  consistent with the  general theorem 

. on rwalitability given earlier,     nils  is accomplished precisely as in the 
power transfer problem when   [31«( i«s») f  and   (Sn(jo>)[   (prescribed) are related 
to   |S22(ja>)[  by equations  (3),  t*"),  and  (5).     The general equation for optimum 
voltage  transfer may then be written as 

!2   _(:-  !s,9(^)j)(i.  js„(»Q|) 23^ZLLL \1 " LOriZiL (12) 
4g(o>) 

fs22(»|>|sn(»| 

The lossless and matched cases are then given an 

•? 

2 

*    -1 - ls22(»r    /.    ,. ms *•        -   ••       —fes- !       vJ.oss.iess; 
4 g(o>) 

(13) 

* 1  -   [S22(>)( , 
-  '-& L (matched) (14) 

4  g(co) 

are t 
The integral equations  for  the latter two cases using equation (l) 

J.     P    f.(o>)    In ( -\ )   .  dco -  K,     (lossless) (15) 
2 "o   1       1 - 4C (») g(«) i 

/f.(co') In ( K V do> - K   (matched)        (16) 
1       1 - 4*Z(«o) g(o)) '       i 

The weighting functions fi(oo) and the parameters % are those 
tabulated in reforenoe 3. 

The only difference in form for the integral constraints in the 
two special cases is the factor l/2. However, since ^ appears under the 
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integral sign the solution for maximum scale factor 1B generally formed from 
a transcendental equation so that thore is no direct relation between the 
voltage gain of lossless and matched equalizers even in the flat transfer 
case.  In this latter caae 

2       IC   a>, < co ^ CO 
%  (co) -J     1^  ^ ^ (17) 

where C is the voltage gain constant to be maximized.  The integrals (16) and 
(16) are then 

1 "2 

J.      J        ft(co) la (- _ ^g eU)     • to -  \    (lossless ) (18) 

/ 
"l 

f,   (co) In  ( 3  . dw «  K    (matched) (19 ) 
1 - 4r

2  g(») 

In effect the problem of a flat voltage equalizer  reduces   to  the 
solution of a power transfer problem where a non-flat power gain ourve shape 
is specified. 

B.    Example - Flat Voltage Equalizsr for R-L Load 

As  an example of a voltage equalizer problem consider  the  case  of 
a load consisting of the series  combination of coil  L and resistor R.     The 
voltage  transfer characteristic is  to be a high pass  one specified by: 

e(x) 
i 0£   x.<x„ c 

where x is  a normalized frequency variable  and xc  is   its  cut off value % 

x - to k- (21) 
& 

c c    R 

The  load conductance is 

y     -  '-    -"- (£2) 

<<*>" i" TTJ (23> 
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Since che load has only & simple zero of transmission at infinity 
the weighting function f(») is unity and the integration constant Kj is given 
bjr*1 

K< i-S. (24) 
L 

The possibility of attaining the equal sign in equation (24) is 
dictated by equation (ll).  If equation (22) is substituted in that equation 
then an upper bound is set on ^ (x) for any value of xi 

^2(X)^LU i £J (26) 

The permissable value of voltage gain increases -with x, and thus 
for flat response 

C2> '^;.V) (86) 
Sinoe  the  lowest permissable  gain occurs at cut-off.     The upper limit for 
K ~   » IVican only be attained  if the value of C  required in the  integral 

1 equations  does  not violate  equation (26).     The  integral  relations  given by 
equation (18)  and  (19) become» 

where 

2 

;">       2  , _ 
la ±-^—      dx4^ (27) 

x2 • a2 
c 

{1 Hatched case 
(28) 

\    lossless case 

and a2 - 1 - ^-2- (29) 

For a    ^ 0 integration of equation (27)  gives 

2 

n(l-a) - x    In -g 2_   - 2  tan      xo + 2a tan —*   -    n/A,  a*1 ^0 (30) 
a    + x 

The equal sign is used in order to determine whether the value of 
a (hence  C by equation (29)) exceeds   the  limit of equation (26).    TThen A • 1 
the  only real  solution for a    in equation (30) occurs when x_ -  0.     In that 
case : 

a - a2 - 0.    C - f. (31) 
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The limit of equation (26) for XQ • 0 is aleo C - R/2, SO that for 
fiat transfer over 0£.X£CD, the maximum value permitted by the integral con- 
straint for a matchuo equalizer can be obtained and this flat gain is preoisely 
the d.c. gain. A lossless equaliser would give no gain advantage, sinoe the 
the solution of equation (30; with A • 1/2 results in a value af C exoeeding 
that permitted by equation (26). 

g 
For values of x0 > 0, negative values of a are required to satisfy 

equation (30). Under these conditions the transcendental equation becomes» 
2 

n- x.. In 
o 

• 1 
bln^ 

- V xQ + b 
• 2 tan 

71 

r (32) 

Where 
b2- 4(T 

R 
_  T (33) 

For values of 0<. x0^. 1.9, the solution of equation (32) for 0 
always exceeds that permitted by equation (26) for both values of A (lossless 
and matohed cases). In this region, where the value of ODL/R is small at 
cut-off, the optimum flat gain is given by equation (26) 

•F- 1 +*P 
04 x £1.9 

c^* 
(34) 

and the lossless equalizer gives no advantage in gain over the matched equal- 
izer. For the medium range of 1.9 <.xc^.4.8, the flat gain of a matohed equal- 
izer as obtained from equation (32) is less than that given by equation (26), 
while the gain of the lossless equalizer is still limited by equation (26). 
Finally for the high range 4.8<i. x0< oo, both lossless and matohed equalizers 
have gains limited by the solution of equation (32). 

When xc is very large equation (32) is approximated very well by? 

b£ * 1 - 2 + ^2., XC>>1 (35) 

Using equation (33), the optimum gain in this case is 

r & y2. ^ 
co„L 

2    A J 

»\ (36) 

Thus as the load resistance becomes negligible compared to the 
load reactance at cutoff, the ratio of maximum flat gain of lossless (A = l/2 ) 
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and matched (A • l) equalizers becomes: 

C (lossless) . yg~ (3?) 

C (matched) 

The comparison of performance of lossless and matched equalizers 
for a flat high pass gain characteristic is summarized in graphical form in 
Fig. MRI-13994.  The heavy line is the bounding ourve defined by equation (25), 
and the dashed curves show the maximum flat gain of the lossless and matched 
equalizers as prescribed by the integral constraints . 

V.  Voltage Transfer Equalization of Reactive Load 

The case of optimum voltage transfer from a finite generator to a 
reaotive load is an important practical problem.  However, the basic real- 
izability theorem quoted in Section 2 is not readily applicable.  Accordingly 
this equalization problem will be treated in a somewhat different way through 
the general point of view outlined in Section 1 will still be used.  The 
optimum voltage equalization of an arbitrary lossless termination has not been 
considered in any complete fashion elsewhere^ so that 3ome details of the 
derivation of the realizability criteria (ge. ml constraints plus load con- 
straints) will be given here.  This will also serve to further illuminate the 
basis for the realizability theorem 1 of Section 2 since the two derivations 
parallel each other.  It will be seen that whereas the scattering coefficients 
were a natural tool for handling the equalization of a dissipative load, the 
open circuit impedance elements are more directly applicable to the reaotive 
load problem. 

In Fig. MRI-13995a a finite generator of voltage 1\  and unit inter- 
nal resistance is shown driving an equalizer terminated in an arbitrary react- 
ance.  The amplitude ratio of output load voltage to open circuit generator 
voltage is 

^ " IvH " i2X2  (u)| (general) (33a) 

where   [Z-^taOj   is  the amplitude of open circuit transfer  impedance  of an 
I overall  network shown in Fig.  MRI-l59S5b,   consisting of the  equalizer shunted 

at the  generator side by a 1  ohm resistor and at the  output side by the 
reactive  load. 

If the  equalizer is  designed  to produce  an  input match,   then the 
voltage  ratio  may be written as t 

Hi   = 2   i   12  ^^1     (matched equalizer) (38) 
|V, 

r 
1 
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•share   'Zj^vw/lis  the amplitude  of the  open oircuit transfer impedance  of the 
matching equalizer plus  lossless  load.     (Generator resistance is  not included.) 

If the equalizer is lossless then in Fig.MRI-13995b with excitation 
at the load side of the overall network, the power delivered here is equal to 
that dissipated in the 1 ohm shunting resistor.     Thus 

£  ? -   \Zzli<*)\2  "   [Z12U)|2 - R22^     do381"8  equalizer) (39) 

where I^C") *8  *ke real part of the open oircuit output driving point im- 
pedance of the overall network on jwj 

R22(a;)  -  Re Z^jw) (40) 
1 

Since the equalization funotions  to he optimized (equations  (38), 
(39))  involve  the  open oircuit impedance paraiaeters,  the  requirements on 
overall network physical  realizability will be expressed in terms of these 
parameters.     The necessary and sufficient conditions  that an open circuit im- 
pedance matrix correspond to a physical 2-port is  that the matrix be positive 
real14.     That is 

a) ^U) R22(») -  H^U)?* 0,  Rai(co)>  0 (41) 

b) The open circuit impedances have no poles in the right half plane. 

c) Impedance element poles on the boundary be simple and the residues of 
Z]2(plZ^(p)and Z22(p) at these poles satisfy 

aila22 - A.Z    °     all > ° 

Equation (41) is the major physical constraint in the equalizer 
problem since if this is satisfied the remaining two requirements can in 
general be met by suitable design of th6 actual equalizer network. 

The constraints of the load can be easily established by observing 
that the reactive load impedance ZL(P) is in parallel with the impedance socr: 
looking in at the back of the equalizer.  Thus 

! z_ Z 7     Zi 

22  '22 + ZL 

*22 "^V («) 
E22 + ZL 

where Z  is the back end open circuit driving point impedance for the 
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I 
1 

! 

equaliser plus load with the 1 ohm resistor at the input removed, and Z22 *8 

a similar quantity for the overall network of Fig. MRI-13995b. (*22 *8 D&ck 
end equalizer impedance) 

Any zero of the reactive load must "be simple and occur on jtc. 
Further if ZL is  expanded in a power series  at this  zero,   the first non vanish- 
ing  Taylor coefficient is  positive.*    Inspection of equation (42)  and (43) show 
that the back end impedance Z22 or Z22 must vanish at this point and in tire 
vicinity of the zero,  p^ • j«>i 1 

Z22(p) " Z22(p) " ZL(P> " ai(P-Pi> P+Pi <44> 

Bquation (27)  is  in  faot entirely independent of the equalizer and its  input 
termination. 

The  requirement that the baok end impedance  of the overall network 
be  constrained by equation (27) can be expressed in integral form by using 
the Cauchy formulas  for  Taylor coefficients.     These  take  the form in the 
present instance oft 

Z22(p)    dp - &i (45) 

where the closed path of integration is along jco \avoiding by small semi- 
circular indentations any boundary poles) and is completed around the semi- 
circle of infinite radius enclosing the right half p plane.  gj.(p) tvre the 
weighting functions to select the appropriate Taylor coefficient of the load, 
a^. If the contributions of the small indentations are accounted for, and 
gi(p) is modified slightly to be even in o> along jco, equation (4b) may be 
written in terms of R22(°>) as follows s 

-J- R22
((J°) dw - —°- ~n \  ~B. (zero at p - o) 

3 n m 

; 
=  2-71 X 

2    2- 
R,,(to) dm - —2-Tt \   b (zero at p -00) gr_, _      ..      _m %. . p  _, ,*,, 

m 

This follows from Foster's reactance theorem,. 
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na 

o <««  -«,*)*    " 4< ^-(co2  -a.2)' J. 1 ni        m i   ' 
(48) 

%/tol 

In every case bjn is  the residue of any Z^2 poles  on jw and is always 
positive.     Suoh poles  can only reduce the permissable  integration oonstant. 
The only other possibility of reducing the right hand sides  of equation (46), 
(47),   (48) is  for Z22  (°r *22^of ""** equaliser to have a zero ooinoident with 

IZL.    Sinoe  these relations must all be satisfied simultaneously by Zg£  (or 
222)#  it may be necessary to introduce elements  in the equaliser whioh cause 
ooinoident zeros  and/or additional poles  on jco.    Another point which should 
bs mentioned here  is  that referring to equation (44),  equations  (45),  (46), 
(47).   (48) are valid both for the barred and unbarred quantities.   

Finally since any tero of the load is a zero of voltage transfer, 
the following physical realizability theorem may be stated? 

Theorem 2   

The necessary and sufficient conditions that a combined network 
consisting of a two port and a prescribed reaetiva termination be physically 
realisable is 

a) The combined network must have a positive real open circuit 
impedance matrix. 

b; All zeros of the reactive load impedance must be contained in 
the open circuit transfer impedance of the combined network. 
(The zero3 are all simple.) 

c) The integral constraints given by equation (46), (47), (48) 
and summarized by the form 

/ 
ft(c») H22(») 

dco " Ki <49) 

must be simultaneously satisfied by the back end resistance 
of the combined network at each zero of the load. 

The similarity between this theorem and theorem 1 is obvious. 

VI. Flat Gain Equalisation of a Reactive Load 

A. Form of Integral Constraints 

As an example of the application of theorem 2, the case of flat 
voltage transfer for a prototype low pass equalizer defined by: 



5* 

I 
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r 
^•154-   'Z"i2^)l '<       r0r°^^1 (50) 1 Y I 0 for l^a)4 op 

•will be examined. 

In the oaae of the matched equalizer, condition a of theorem 2  leads 
te 

Rg2(») - R?2(ea)>0      (Matohed equalizer) (51) 

This is obtained from equation (41) with RJIU) - 1,   0^.co oo   . 

N/v- 

RjgU) - |Z12(»)|  °°»   (*P (») *   e(<*)) (62) 

Where f is the minimum phase characteristic of the combined network 
(equalizer and load), and 9(<o) any phase characteristic obtained with a 
tandem combination of unit voltage transfer networks, considered as part of 
the equalizer (i.e. the latter need not be a minimum phase network). 

The function^ (co) is directly found graphically or analytically 
from the shape of the Zi2(o>) amplitude function and is not affected by the 
scale factor on this function.1  ©(a>) is independent of M*(») and is con- 
tinuous with positive slope.  If equation (52) is substituted into (5l), it 
is clear that a necessary condition for maximumj£i2(w)I*-

s "^at the equal sign 
be used. Thus 

R22U) - |z12(o>)|2 cos2 (¥• e) - HJ8(») (53) 

This means  that the combined matched equalizer-load network will require no 
re  than 1  res is tor. 14    Suppose  that   |Zj_2(a>)|   is  represented as 

[Z,2(co)|  -     J C °^a>^1       (k a positive  integer) (54) 

where 
C  -  2  C (55) 

As k->co, the transfer characteristic defined by equation (54) 
approaches the gain shape given by equation (50) (it differs by the factor 
1/2). 

mo 

*li«     1UX 

belowt     (See  reference  1,   pages  312-31?) 
ininrcua phase characteristic defined by equation (54)  is  given 

(56) 
, QP ii kf_(a>)    0«C<o£l 

If (») - |     y    log coth J|L du -     J       1 

k<f   (a)     Ka><oo 
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In this equation u -  log fi/co, where & is  the  running  frequency 
variable of integration.     The  definite  integral  is  of course a function of 
co. 

The approximate values of fl(u) and1^^) are given below for 
referenoe only.     They are not used in the derivation,  and merely indioate 
the nature of these functions.     They are oqntinuous and monotonlo- 

If jU)*     - k |£.      O^o^l (56a) 

ip2U)=     ~kj       Ke»4<o (56b) 

The integral equation (49) of theorem 2 for the matched flat voltage 
equalizer becomes 

C2 P   f±(»)  cos2   [k<fx(co) +  6U)]dco +  C2 f•   £i^lcos2  (k¥2(o>) •   6(co))dco -  Kt 

The second integral  clearly approaches  zero  as  k becomes   infinite. 
Expanding the squared cosine  term,   the first integral may be written as i 

^-   J     f  (co)dai + 5-    f     n^C® oos  26(a>y]cos   2k ^U)  dco 

4   f    |~fi(c°)  nin 2e(co)]sin 2k ^(co) dco 

Now let V(co) " 2*fi(co),  hence ^'(co) dco « d / ,  co •  h(V) so  that the  second and 
third integrals  above become t 

ltd) JtD 

"J(o) - a t/y(o)= o 

,v,   fi(y> cos 26(o ft(r) cos 2e(r) 
gi°°"TM *82<r)'*7M— 

(The first of these  integrals  is  essentially the k'th order Fourier 
coefficient for a function defined equal  to  gi(Y)  in the  interval^ (°)  to 
V("0,  periodic for ally and even in y.     The second is  a k'th order Fourier 
coefficient for a function defined as  equal  to g£(Y)  over the  interval  Y(0) 
toY(l),  periodic and odd in X •    As  k becomes   large,   the  Fourier coefficients 
approach zero,  hence  iiiese  integrals  vanish in the  limit k-^oo . 

• 

I 
I 
! 

i 
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The final  representation of the integral constraint for a matched 
equalizer with the low pass flat voltage gain of equation (50) is  therefore 

«2 J. 2 C P   f (co) - K (matched flat low pass case) (67) 

A similar derivation for a flat hand pass over the interval co^ to »2 
(zero gain elsewhere) gives 

2 C2 P®2 f±(<a)  - K (matohed flat hand pass case) (67a) 

1 

Both these equations (57) and (67a) are entirely independent of 
whether minimum or non-minimum phase networks are used, hut apply only to a 
flat voltage gain response of amplitude C over a finite interval with jero 
gain elsewhere. 

Returning to the low pass case, let 

1 
C   fi(ca) duo « k± (68) 

equation (67) may then he written 

C2 =  *i_ (Matched) (59) 
2Ai 

This equation is  independent of -whether minimum or non-minimum phase net- 
works are used. 

For a lossless equalizer, aquation (39) may he used direotly in 
connection with equation (50) and plaoed into the expression of theorem 2. 
Thus  the lossless equalizer with flat transfer characteristics  given hy 
equation (60) must satisfyi 

oo oo 1 

J     fi(co) \ZM  dco m?    ft(«)   |Z18(»)|2  dw -  C2J    t±(»)  dco (60) 
o "Q O 

or 

C~  • —*•    ^Lossless  cas»; (61) 
ki 

and the ratio of optimum matohed and lossless equalizer gains  for the flat 
«ransicr cass  ar-d  reactive  lead is > 

« 
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,.:< 

C (lQ3BleS8)  m   yC 

5 (matched) 
(62) 

B. Example of a C-LC Load 

As an example of the application of the material given above 
suppose it is required to design a fiat voltage equaliser over the band 
O^w^l for a three element load. The load consists of a oapaoitor C in 
shunt with a series circuit of coil L and condenser C. 

This load impedance has zeros at p - co. and p - • joo^ with a>j • l/LC .* 

The Taylor coefficients at these zeros are : 

(p - oo ) a^- jrr (63) 

(p - + JCD1) ax - §£ (64) 

Referring to equations   (47) and (48) and neglecting the pole 
res idue terms t 

nao" n 

K, 

n ai 
K* -  1 

4 co. 

2C 

- -T2 
1       m Li 

2 2 

For the zero at infinity the weighting function is unity and 

1 

/ 
d« 

(65) 

(63) 

(67) 

For the zero at + 3mi» "the weighting function is f2(u>) « 

1 

(•* 
2,2 

*1   ) 

and 

••/ 

do 

.w a>1   ) 2oix  (ajj     -  l) 4^3   ^r^ 
(68) 

Presumed outside of pass-band. 
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Consider a specific numerical case with 

-4 
L - C -    1 

(69) 

For these conditions the various constants may be evaluated to give i 

h 
(70) Ai 

K2 

A2 

n/4           i 
0.35       L*0 

(71) 

The only way to satisfy these constraints simultaneously is  to 
reduce the value of Ki by using parasitic elements  in the equalizer.     This 
can be done for example by use of a shunt condenser aoross  the equaliser output 
and in parallel with the load of value C'  - 0.2.    As a result the maximum 
gain of this equalizer is not limited by the capacitance C', bu~fc by the series 
I£ circuit and the aiaximum vaiue of "this gain lor a lowpass matched equalizer 
is 

equalizer is not limited by the capacitance C, 
d the auaximum vaiue of this gain lor a lowpass 

(matched) (72) V  2.6 .80 

and for a lossless equalizer the maximum gain is 

C-/^ (lossless) (73) 

It is up to *he designer to deuide whether a matched input to  the 
equalizer system is worth sacrificing for a 40$ inorease in gain. 

C.    Design of a Finite Equalizer Network 

In the previous  discussion ideal characteristics were  assumed for 
the equalizer amplitude response.     The voltage  gain was presumed absolutely 
flat in the pass band, and the cut-off was taken as  infinitely sharp.    In 
order to apply theorem 2  to the design of a finite network,  a gain charac- 
teristic may be assumed in analytic form (i.e. an even rational funotion 
of oo which  is  always  positive).     The  aualyslo   in 3uch a case  involves  de- 
termination of the Rg£ characteristic and its substitution in the  integral 
equations  to  determ5.ne  the maximum gain scale  factor.     To  illustrate  this 
procedure a simple example -will be given for the voltage equalization and 
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matoh of & unit oapacitive termination*'. A Butterworth type of low pass 
response is assumed for a matched equaliser 

lzi2(o>)l
2 - -21. (74) 

1 + CO 

The amplitude of Zlg(co)2 is down by l/z at » • 1 whioh is oonsidered 
the normalised out-off frequency.    C is a gain constant whose maximum value 
is to be determined by applying theorem 2. 

Equation (74) may be faotored to giye the open circuit transfer 
inpedanse ZijCp) of the required oombined matohed equaliser-load network. 
This funotion must have no right half plane poles. 

z12(p) - g V— my 18        P
z • /TP • i 

The impedance Z^p) has the eero of the load at infinity as pre* 
scribed by theorem 2 because of the particular ohoice of amplitude funotion 
in equation (74). 

The real component of Zi2(p) along P • j® is 

1 • CO 

and applying equation (5?) for the optimum matohed equaliser 

(i' »«)8 

The oomplex impedance ZggCp) may 'be obtained by expanding Rggf*) 
in partial fractions as described on pages g04-"Q5 of reference 1.  The 
result** is *   e 

Z (p) - C2 0.358 p • p • 1.086 PJL1  (?|) 

P + 2.82 p° + 4p • 2.62 p + 1 

This function has the load sero at infinity as prescribed by 
theorem 2. 

loadt 
The integral constraint (equation (47)) gives for unit oapaoitiye 

* 
This example is taxen from a thesis by L* Norde for the degree M.E.B. at the 
Polytechnic Institute of Brooklyn, June 1988. 
** / \ 
In general if the resulting Zggvp/ funotion does not oontain the required load 
seros, it is neoeusary to form new rational functions for |Zl2(»)|  (poeeibly 
by the use of common numerator and denominator factors) until this require* 
ment is satisfied. 
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. 

H,..:,   do,  -   (/'    J     --—-----   .     do)   ^ (79) 
Zt «< / 4i2 2 

° °    (i + » r 

If the  definite  integral  is evaluated,  the gain factor C  i3  found 
to be 

C - 1.68 (80) 

or 
C 

C - -- 0.84 (matched oaae) (81) 

The maximum gain for the completely ideal low pass characteristic 
(in the matched case) obtained from equation (59) is 

C (ideal) - 0.89 (matched case) (82) 

so that the simple characteristic of equation (74) is a reasonable compromise. 

The final matohed equalizer plus load is specified by equations (75), 
(78) and 

zu(P) - 1 

The resultant network is shown in Fig. MRI-13996a. Observe that 
the load oapaoitanoe is removable leaving a physical equaliser, and only 1 
resistor appears in bhe network. 

The design of a lossless equaliser from a specified [Z^C0*)!^ 
characteristic which satisfies theorem 2 is straightforward.  The equalizer 
network is merely synthesized from the back end as a reactance 2-port 
terminated in a 1 ohm resistor by the Darlington prooedure for the speoial 
oase of an infinite impodance generator.10 The 1 ohm reaiBtor (input gener- 
ator impedance) and load are then removed, and the remaining lossless not- 
work is the required equalizer. 

For the example of equation (74; with 

s2 

1-4-0) 

The  integral  requirement gives 

z,»!2 - -—r- *>» (83) 

/* 
1/ i CUD    •    TT 

*  1 • «4      2 

and 0 28 
C - 2 - 1.19    (lossless  equalizer) (84) 

The network is   shown in Fig.  MRI-lb996b. 

*  This  constraint could have been directly obtained from the network synthesis 
by choosing C to give  the prescribed load capacitance. 
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(a)    MATCHED   EQUALIZER    A=0.84 

1/1.19 I 
s HfW^ -o 

-o 

c--i 

load 

(b)     LOSSLESS   EQUALIZER    A=i,!9 

EQUALIZERS  FOR CAPACITIVE  LOAD 

AND VOLTAGE   GAIN  = ~~i— 
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